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Received 12 May 1989 

Abstract. We derive the Fokker-Planck equation for the distribution of the phase of the 
reflection amplitude for a disordered conductor of length L ,  using the invariant embedding 
method. The limiting ( L  = m) stationary distribution in the strong-reflection regime is 
uniform provided that the localisation length is large compared with a Fermi wavelength. 
Next we study the joint distribution of the phase shift and of the time delay experienced by 
an incident electron in the conductor before being back-scattered. We obtain the explicit 
form of the marginal distribution for time delays for large L and strong reflections, using the 
uniformity of the phase distribution. We apply it to study the spectral density of the surface 
charge fluctuation noise. An approximate analytical calculation yields anf1/2(3 ~ a/2)  spectrum 
where 1y 5 1. 

1. Introduction 

This paper deals with two related aspects of first-principles theories of fluctuations of 
transport properties in mesoscopic systems due to Anderson localisation. 

First we study the distribution of the phase 8 of the amplitude reflection coefficient 
for a strongly reflecting one-dimensional conductor of length L. Strong reflection occurs 
when L is large compared with the localisation length L,. Such a study is of interest for 
scaling theories of resistance and/or conductance fluctuations which usually regard the 
phase as a uniformly distributed independent random variable, as a result of successive 
scatterings by the random potential. Previous analyses of the phase distribution [l, 21 in 
specific models provided only partial support for the above assumption for weak 
disorder. However, an unambiguous justification of phase randomisation was found 
recently by the present author [3] for the weak-reflection or quasi-metallic domain ( L  G 
L,), for L + k;’ .  Here hko is the momentum of an incident electron. Moreover, both 
the uniformity of the phase distribution and the absence of significant correlations 
between the phasiand the modulus of the reflection amplitude were demonstrated by 
a calculation of the exact low-order resistance moments [3], which differed from the 
random phase moments only by terms of order (k0L)-’ G 1. The analysis in [3] is based 
on the method of invariant embedding which has been successfully applied in the context 
of resistance fluctuations [4-61. The present study of the phase distribution in the 
insulating or strong-reflection regime ( L  %- L,) also uses the embedding method. More 
precisely, we shall obtain the explicit form of the stationary ( L  = m) solution of the 
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Fokker-Planck equation associated with the invariant embedding equation for the 
reflection amplitude in the presence of the random potential. 

An important consequence of phase randomness is the occurrence of surface current 
noise, as shown recently in [7]. In [7] it was observed that Anderson localised states in 
an infinite system become short-lived resonances near the surface of a bounded sample 
[7, 81 owing to their overlap with free particle states in the vacuum region. These 
Anderson resonances lead to resonant back-scattering with random time delays for 
different energy Fourier components of an incident wave-packet and, hence, to low- 
frequency current fluctuation noise. In [7] standard resonance scattering theory, where 
the phase is defined phenomenologically in terms of the position and the width of a 
resonance, was used and a l/f noise spectrum was obtained. The second aspect con- 
sidered in this paper is the discussion of the above electrical noise from the more 
fundamental invariant embedding point of view. The random phase 8 and the time delay 
[7] t = f i  d 8/d E are defined in terms of the characteristics of the trajectory followed by 
an incident electron in the disordered region before being reflected. These definitions 
allow us to study the joint distribution of z and 8 and, in particular, the marginal 
distribution of t, which enters in the general expression in [7] for the low-frequency 
current spectral density in terms of phases. In an analytical approximation, our treatment 
yields a charge fluctuation noise of the f ~ r m f - ( ' / ~ ) ( ~ - @ / ~ ) ,  where the constant parameter 
a 5 1 describes the growth rate with L of a typical value of t. This form of the charge 
fluctuation noise reduces to the l lfform [7] if a = 2. 

In § 2 we recall the coupled invariant embedding equations for the modulus vr and 
the phase 8 of the reflection amplitude for a one-dimensional disordered conductor of 
length L. By differentiation of the equation for 8, we obtain afurther equation, depend- 
ing on r and 8, for the delay time t. With the assumption of a white-noise random 
potential the above stochastic equations are used in the strong-reflection limit ( r  - 1) to 
obtain the Fokker-Planck equations for the phase distribution Po( 8, L )  and for the joint 
distribution P ( t ,  8, L )  of z and 8. Explicit solutions for the stationary ( L  = w) phase 
distribution and for the marginal distribution of delay times, for large L ,  as well as the 
discussion of electrical noise are presented in § 3. Some remarks concerning correlation 
functions and connections with other work are given in § 4. 

2. Stochastic equation for the reflection amplitude and associated Fokker-Planck 
equations 

The invariant embedding equation for the complex reflection amplitude [5]  R ( L )  = 
v r  exp(i8) for an electron incident at the edge x = L of a one-dimensional conductor 
of length L may be split into the coupled equations 

dp /dL  = -[2V(L)/ko] sin 8 (la) 

d8 /dL  = 2ko - [2V(L)/ko]{l + [ (2p  + 1)/2-] cos e} (lb) 

for the phase 8 and the dimensionless resistance p given by the Landauer [9] formula 

p = r(I - r ) - ' .  ( 2 )  

Here E = k;/2 (in units such that f i  = m = 1)  is the energy of the incident electron and 
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V ( L )  is the random potential which we take to be Gaussian, 6 correlated and of mean 
zero: 

(V(L)V(L’)) = V i 6 ( L  - L’) ( V ( L ) )  = 0. (3) 
We are interested in the strong-reflection regime ( r  - 1 ,  i.e. p + CO) where we shall also 
study the quantity 

giving the time interval by which an incident electron is delayed in the disordered 
conductor before being reflected [7]. From ( l b ) ,  we obtain 

r - 1. ( 5 )  
The first term on the right-hand side of equation (16) (and hence the corresponding term 
in equation ( 5 ) )  has an obvious interpretation: 2ko d L is the phase change resultingfrom 
a return trip of an electron to a location a distance d L below the surface, in the absence 
of the random potential. The second term in ( l b )  then represents the change in the 
electron momentum (up to a factor of 2) due to the effect of the random potential. As 
mentioned in the previous section, the precise connection between this microscopic 
definition of phase changes and the definition of the phase in terms of the parameters of 
the resonant scattering model in [7] is not fully clear. The comparison in 0 3 of the form 
of the phase distribution and of the form of the electrical noise for the two cases is 
therefore of particular interest. 

We now derive Fokker-Planck equations successively for the joint distribution 
P(p,  8, L )  of the coupled stochastic variables p ,  8 in equations ( l a )  and ( l b )  and for the 
joint distribution P ( z ,  8, L )  of the variables t, 8 (for p-, CO) obeying equations ( l b )  
and (5 ) .  We follow a general procedure based on Van Kampen’s [lo] lemma. 

In the general case of n stochastic variables {x,}, j = 1,2,  . . . , n,  coupled by a white 
noise w(E) evolving in a generalised ‘time’ ( E )  space, with 

the stochastic equations analogous to (la) and ( l b )  are 

The set x = {x,} of x,-values at a given ‘time’ represents a point in an n-dimensional phase 
space evolving according to equations (7). The form of the trajectory depends on the 
initial conditions and on the realisation of ~ ( 5 ) .  Consider now an ensemble of systems 
in x-space corresponding to a given realisation of w(5) but different initial conditions 
and evolving according to equations (7) .  This ensemble is described by a density 
p({x,}, E ) ,  which obeys a continuity equation (stochastic Liouville equation) 

z = d8 /dE  (4) 

d z/d L = 2/k0 + [2V(L) /k$]  ( 1  + cos 8 + k; z sin 8 )  

(w(E)w(E’)> = w 2 o w  - 5’) (w(E)> = 0 ( 6 )  

dx,/dE = F,({x,H + Gl({xf}bv(E) i = 1 , 2  , . . . ,  n. (7) 

ap({xj’7 E )  = - CL [[Fi({xj>) + w(~)Gi({x j} )]p({x ,} ,  E ) ] .  a5 axi 
According to Van Kampen’s [lo] lemma, the joint probability density of the variables 
{xi} is given by the average of p({xj}, 5) over realisations of ~ ( 5 ) :  

By averaging equation (8) giving the rate of change in p at a fixed point x ,  we obtain 
P({xj}, E )  = ( ~ ( { x j > ,  5))- (9) 

where the form of the left-hand side follows from the comparison of the average of (8) 
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with the &derivative of the average of its first integral. From Novikov’s [ l l ]  formula we 
then have 

(w(E)p({x j>,  E ) )  = (w2,/2) (dp({x j ) ,  E)/Sw(E)) (11) 

where the ‘equal-time’ correlation function 6p({x j } ,  Q / S w ( E )  is obtained explicitly by 
differentiation of the first integral in equation (8), recalling that 6p({xi},  l j ) / s w ( f ’ )  = 0 
for E’ > E because of causality. In this way we finally obtain 

which may be readily reduced to the more standard form [12] of the Fokker-Planck 
equation for white-noise processes with several stochastic variables, by rewriting the 
diffusion term in (12) as 

and grouping the last term with the drift term in equation (12). 

( la)  and ( lb) ,  equation (12) yields 

aP/al = -2koLc aP/a8 + 2 sin2 8 (a/ap) (p (p  + 1) aP/ap + ( p  + 4 ) P  

Now, in the special case of the two stochastic variables p and 8 defined by equations 

+ [-/sin 81 (a/ae)uu + [ ( 2 ~  + ~ ) / ~ V P ( P  + 111 COS wn) 
+ 2(d/ae)[U + [(2P + 1)/2%0 + 111 

+ (d/ae)u{1+ + ~ ) / ~ V / P ( P  + 111 COS wn)i (13) 

x cos e}(sin e ( a / a p ) [ V p ( p  + I)P] 

where 1 = L/Lc and L, = k&’Vi is the localisation length. In the special case where p 
and 8 are arbitrarily assumed to be independent and the distribution of 8 is taken to be 
uniform between 0 and 2n, we have P ( p ,  8 )  = (2n)-’Pp(p, L ) .  In this case averaging 
over 8 in equation (13) to introduce the marginal resistance distribution 
P, (p ,  L )  = Jp d e  P ( p ,  8 )  readily yields the familiar equation 

aP, /J l= (a/” + 1) aP,lapl (14) 

which has been studied in previous work [4,6]. Our interest here lies in the marginal 
phase distribution P e ( 8 ,  L) = Ji d p  P ( p ,  8, L) in the strong-reflection limit (p+ x) 
which, to our knowledge, has not been discussed before. Integration over p of the 
limiting form for p 1 of equation (13), with the boundary conditions P ( p  + x, 8, L) = 
0 and dP/ap(,,, = 0, yields 

d P e ( 8 ,  L) /al= - 2koL, aPe(8 ,  L)/a8 

+ 2(a/d8){(1 + COS e)(a/ae)[(i + COS B ) P , ( e ,  L)]} 

whose solutions will be discussed in 0 3. 
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Finally we use equation (12) to obtain the Fokker-Planck equation for the joint 
distribution P = P ( t ,  8, L )  (for r - 1) of the variables 8 and t defined by equations ( lb)  
and ( 5 ) .  Using the large-p limit of ( lb) ,  we get 

ap/ai = - 2 k o ~ ,  ap/ae - ( 2 ~ , / k , ) ( a p / a 4  +2(d/a8) 

x {(I +COS e ) (a /ae) [ ( i  +COS e ) ~ ] }  - (2/k;)(a/de) 

x {( l+cos  8 ) ( a / a r ) [ ( 1 + ~ 0 ~  8 + k : t  sin e)P]}-(2/k2,)(a/az) 

x ((1 +COS 8 + k i 2  sin e)(a/ae)[( l  +COS 8)P]}+ (2 /k i ) ( a / a~ )  

x {( 1 + cos 8 + k i r  sin 8)(a/az)[( 1 + cos 8 + kit sin 8)P]}. (16) 

Here again we are not interested in the fullinformation contained in the joint distribution 
P ( t ,  8, L ) ,  but only in the marginal distribution of time delays z, i.e. 

P r ( z ,  L )  = jOzn d B P ( t ,  8, L).  (17) 

Since z is a derivative (equation (4)), we expect it to fluctuate much more rapidly than 
the random variable 8 itself. Therefore we shall treat z and 8 as independent and, as in 
the above discussion of the resistance distribution [4,6], we assume 8 to be uniformly 
distributed, i.e. P(t, 8, L )  = (2n)-’P,(t, L).  Then, after averaging both sides of 
equation (16) over 8 to introduce the distribution (17), we obtain 

aP,/ai  = 2p, + (42 - 2 ~ , , i k , ) a ~ , / a z  + (3 /k ;  + T * ) ~ ~ P , / ~ T ~ .  (18) 

A similar equation for the distribution of time delays has been derived previously in 
[13]. The assumption of a uniform phase distribution is supported by our detailed study 
of the latter distribution in § 3. The explicit solution of equation (18) will be used to 
study electrical noise, as discussed above. 

3. Detailed results 

3.1. Stationary phase distribution 

The solution of equation (15) may be found analytically in the stationary regime, L + m, 

where aP8/al = 0. In this case, equation (15) is solved by 

where 

and C is the arbitrary constant appearing in the first integral of the right-hand side of 
(15) which is determined by normalisation: Jp d8Pg(8 ,  1-m) = 1. For koL, %= 1, i.e. 
for L, well above the Ioffe-Regel limit ( k i ’  equals approximately the Fermi wavelength 
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of the leads) we may give (19) in terms of an expansion in powers of l/koL, obtained by 
successive partial integrations: 

P, (e ,  b-+m) = (1/2n)[1+ 1 / 2 ( k , ~ , ) ~ ] - ~  [I - ( 1 / k o ~ , )  sin e ( i  +COS e )  
- [ 1 / ( k , ~ , ) ~ ] ( 1 + c o s e ) ~ ( 1 + c o s e - 3 s i n ~  e ) + - . - ]  (21) 

where normalisation has yielded C = - n-lkoL,[ l  + 2-'(koLC)-*]-'. We demonstrate 
therefore that in the strong-reflection limit the stationary phase distribution tends indeed 
to a uniform distribution for koL, % 1. A similar conclusion concerning the form of the 
phase distribution was reached previously [3] for the opposite limit, namely the low- 
reflection or quasi-metallic domain L < L,, for koL % 1. We note that in a different 
context the distribution of the phase of electromagnetic waves back-scattered by a 
random refractive medium has been studied [ l ]  and found to be relatively uniform 
except near the edges of the 2n interval. On the other hand, the results in [8] indicate 
that for the localised resonances model the phase distribution is generally non-uniform, 
except near odd multiples of * n/2. 

3.2. Electrical surface noise 

For an incident electron of energy E the average surface current spectral density SJ(w)  
at frequency w reduces approximately to the form [7,13] 

S J ( w )  = $,(E) (sin*{[e(E+ w )  - e(E)]/2}) (22) 

in the strong-reflection limit ( r  - 1). Here, the averaging is over the disorder and the 
frequency dependence of &(E) is much weaker than that of the remaining factor. At 
low frequencies, we have 

8(E + U) - 8(E) 0 dO/dE = (23) 
provided that the otherwise arbitrary quantity wz represents the leading term, which 
requires that w 4 2 /d  (In t)/dEl-l. By inserting (23) into (22), we have 

S J ( w )  = S,(E)(sin2(wt/2)) = S,(E) Iffi d t  Pt(t, L )  sin 
r mm 

where the lower limit zmin for the integral only means that we take w to be sufficiently 
large that the uninteresting contribution (proportional to w 2 )  from the domain 
0 < z < tmin - 2/w is negligible. 

For the further analysis of equation (24) we require the delay time distribution 
Pr(z ,  L ) ,  determined by equation (18). To obtain the explicit form of P t ( z ,  L )  for large 
but finite L,  we first derive the form of the moments 

t,, = (a,) = d z  z n P r ' ( z ,  L )  n = 0 , 1 , 2 , .  . . . (25) I,: 
Recursion relations for the moments are obtained by multiplying both sides of (18) by 
z" and integrating over t. After some partial integrations, using the boundary condition 
P&+ m, L )  = 0, we get 

az,/al= n(n - l )z ,  + 2n(L,/ko)t,-l + (3/k;)n(n - l ) ~ , - ~  (26) 
where to = 1 by normalisation. In the strong-reflection regime, L %- L,, the solutions 

n = 0,1,2,  . . . 
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for the moments are rapidly growing functions of the order n(t ,  + T , - ~ ,  etc). Thus, for 
n > 1, we obtain 

t, - exp[n(n - 1)1] (27) 

(z) = 2L/ko. (28) 

while, for n = 1, we have 

Equation (28) reveals a surprising property, namely that in the strong-reflection regime 
the mean value of the delay time coincides with the time required for an incident electron 
to execute a return trip across the sample, in the absence of randomness. On the other 
hand, it follows from (27) and (28) that the delay time is not a self-averaging quantity 
since for example the RMS deviation grows more rapidly than the mean. 

The moments (27) enable us to obtain the asymptotic form of P r ( z ,  L )  from the 
characteristic function 

(ik)" 
d k )  = 2 - t,. , n! 

Here the summation over the moments may be performed in closed form using the 
identity 

exp[n(n - 1)1] = (4nI)-'/* exp[ - (2n + t)l] dx  exp[(n + 4)x] exp ( --;I (30) 
--z 

and we shall ignore higher-order effects due to the difference between (27) and the 
correct form (28) for tl. In this way we get 

P r ( z ,  L) = ( 2 ~ r - l  dkexp(-ikz)cp(k) 
--cc 

which has the form of the weak tail of a normalised Gaussian for the variable In z % 1. 
We note that the function (31) differs from the corresponding asymptotic distribution 
of resistance in an essential way; the maximum of the Gaussian distribution of the 
logarithm of resistance [4] occurs at the value 1 % 1 (instead of - l ) ,  i.e. within the 
asymptotic domain. 

We now evaluate the current spectral density by inserting (31) into (24) which we 
then rewrite in the form 

In order to approximate the frequency dependence of SJ(w)  in closed form, we replace 
the slowly varying logarithmic exponent in the integrand by a typical value. From the 
form (27) of the nth-order (n > 1) moment it is clear that typical values of In z are of the 
form In z - al, where a is constant, a 2 1. With this approximation it follows that 

(33) sJ(w) - w(1/2)11+4) 

which implies a l/o@ noise, p = i (3  - a/2), for surface charge (voltage) fluctuations. 



1566 J Heinrichs 

We thus find that the low-frequency surface charge fluctuation noise varies with an 
exponent s 3, which is generally different from the l lfform obtained in [7] for the 
localised resonances model [ 141. 

4. Concluding remarks 

In this paper we have discussed the distribution of the phase of the reflection coefficient 
and the distribution of the time delay for reflection, together with the resulting electrical 
noise, in the strong-reflection regime. Our explicit study of the phase distribution in the 
stationary limit strongly supports previous analyses of scaling properties of the resistance 
and of the transmission coefficient [4,6,  15-18] based on uniformly distributed phases. 
Our first-principles study of electrical noise due to randomly delayed reflection of 
electrons at the surface leads to an approximate l/wP voltage noise ( p  6 4). This has a 
more complicated form than the l/f noise predicted recently in [7] for a model of 
Anderson localised resonances. 

An alternative treatment of the above electrical noise would consist in finding directly 
the phase difference g, = B(E + w )  - B(E) distribution, at neighbouring energies in 
equation (22). This distribution may be studied starting from the stochastic equation for 
g, obtained from ( lb)  by defining the variables rp and B(E),  instead of B(E + w )  and 
@(E).  A Fokker-Planck equation for the marginal distribution P,(g,, L )  may then be 
obtained by averaging uniformly over absolute phases B(E),  as usual. Unfortunately, the 
resulting equation, which reduces to (18) for g, 4 1, is generally intractable analytically. 
Therefore the approach in 0 3 which, however, does not assume g, 1 appears to be 
more judicious here. Note also that in that case the distribution of g, given by (23) is 
simply 

p ,  (U, , L )  = (l /w>Pr ( r  = v / w ,  L )  (34) 
which is valid for sufficiently small w .  

The distributions of phase differences v, = 8(E’) - B(E) at slightly different energies 
E’ and E ,  based on averaging over the remaining phase variable B(E),  have been studied 
in [19-221 for the purpose of analysing correlation functions. In fact, our results for the 
moments of the delay time distribution may be readily used to study the phase correlation 
function 

( w ) e ( E ) )  - (B(E’))(B(E))  (35) 
and, in particular, the phase decorrelation length [21,22], which determines the 
dynamical conductivity. Following the results in § 3.1, we assume B(E) to be uniformly 
distributed between 0 and 2n and we have 

([B(E’)  - B(E)I2) = - 2(B(Ef)B(E)) + 8n2/3 

z (AE)’(z2(E)) A E  = E‘ - E .  

The correlation function (35) then takes the form 

( e ( ~ f > m ) )  - (e(Ef))(e(E)> = n2/3 - [(AE)’/2I(r2(E)) (36) 
where we insert the exact solution of (26) for z2  (z2) that vanishes for 1 = 0, namely 
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The phase decorrelation length I* is the particular length at which (36) vanishes and 
from (36) and (37) we get 

L* = L ,  ln[&k?j/v3(3 + 2k?jL:)/AEI]. (38) 
This expression for the decorrelation length is similar to an expression obtained in [22] 
(see their equation (3.10)). As discussed in [22], L* is related to the microscopic phase 
correlation length introduced in [21] and used to determine the dynamical conductivity 
a(w) and, in particular, to justify the Mott-Davis [23] expression for the hopping 
conductivity:, 

a(o )  h2(wz*) (39) 
where t* is the elastic scattering time. 
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